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ABSTRACT

In this paper, taking the Lorenz system as an example, we compare the influences of the arithmetic
mean and the geometric mean on measuring the global and local average error growth. The results show
that the geometric mean error (GME) has a smoother growth than the arithmetic mean error (AME) for
the global average error growth, and the GME is directly related to the maximal Lyapunov exponent, but
the AME is not, as already noted by Krishnamurthy in 1993. Besides these, the GME is shown to be more
appropriate than the AME in measuring the mean error growth in terms of the probability distribution
of errors. The physical meanings of the saturation levels of the AME and the GME are also shown to be
different. However, there is no obvious difference between the local average error growth with the arithmetic
mean and the geometric mean, indicating that the choices of the AME or the GME have no influence on the
measure of local average predictability.
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1. Introduction

The atmosphere is a forced dissipative nonlinear

system. On the assumption that external forces are

bounded, the existence of the atmosphere attractor

has been mathematically proved (Li and Chou, 1997;

Li andWang, 2008). The predictability of atmospheric

weather fluctuations is limited to 1–2 weeks due to

the nonlinearity and instability properties of the atmo-

spheric flow (Lorenz, 1963, 1969; Zhou, 2005). Up to

now, the predictability studies of the atmosphere are

mainly based on numerical models (Leith, 1983; Sim-

mons et al., 1995; Mu et al., 2002; Lang and Wang,

2005). If the solutions evolving from several initial

states closely located around an assumed true state

have been obtained, the divergence of all the solutions

from the true solution is then determined. The pre-

dictability of the model is expressed in terms of the

growth rate of the root mean square (RMS) error and

the doubling time of small errors.

Atmospheric predictability is found to vary obvi-

ously with time and it depends on the particular state

of atmospheric flow patterns (Lorenz, 1965; Legras

and Ghil, 1985; Yoden and Nomura, 1993; Ding et

al., 2008a). To understand the average predictabil-

ity properties of the atmosphere, an ensemble mean of

error growth at different initial states must be consid-

ered. The ensemble mean can be either arithmetic or

geometric. In previous studies, the arithmetic mean

is widely used to measure the average growth of the

errors, as in the ensemble prediction systems (Tracton

and Kalnay, 1993; Palmer et al., 1993). However, the

arithmetic mean is found to have a weakness. If one

or two values of the errors are either extremely large

or extremely small compared to the majority of the

errors, the arithmetic mean might not be an appro-

priate average to represent the errors. In that case

the geometric mean can better represent the average
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errors. The geometric mean was applied in several re-

cent studies, showing good properties. For example,

the amplitude factor as the spatial geometrical mean

value of a perturbation, as introduced by López et al.

(2004), is directly related to the maximal Lyapunov

exponent and exhibits nice scaling properties. A new

ensemble method (logarithmic bred vectors) based on

the geometric mean of the perturbations, as presented

by Primo et al. (2008), increases the diversity of the

ensemble and allows the spread to grow faster.

Since the error growth with the arithmetic mean

is different from that with the geometric mean, the es-

timated predictability based on the error growth is also

different. Based on the Lorenz’s 28-variable model,

Krishnamurthy (1993) compared the differences be-

tween the error growth with the arithmetic mean and

the error growth with the geometric mean, and found

that the RMS error shows a smoother growth when the

computed mean is geometric rather than arithmetic.

Except the work of Krishnamurthy (1993), few stud-

ies have been performed to investigate the influences of

ensemble mean methods of errors on the predictability

measurement. To further understand which method

should be chosen to better measure the predictability,

it is necessary to investigate again the differences be-

tween two kinds of ensemble mean methods in describ-

ing the error growth. In this paper, taking the Lorenz

system as an example, we further compare the differ-

ences between two kinds of ensemble mean methods

in measuring the predictability. The results show that

the geometric mean error (GME) shows a smoother

growth than the arithmetic mean error (AME) for the

global average error growth, and that the GME is di-

rectly related to the maximal Lyapunov exponent, but

the AME is not. These findings are consistent with

Krishnamurthy (1993). In addition, we show that the

GME is more appropriate than the AME in measur-

ing the mean error growth in terms of the probabil-

ity distribution of errors. We also show the physical

meanings of the saturation levels of the AME and the

GME. There is no obvious difference between the lo-

cal average error growth with the arithmetic mean and

the geometric mean, which is also a major finding of

this work.

2. Global average growth of errors

Let x1, x2, x3, · · · , xn be n positive numbers.

Their arithmetic mean and geometric mean are writ-

ten as (x1+x2+ · · ·+xn)/n and n

√
x1x2 · · ·xn, respec-

tively. It is easy to prove the following inequality,

n

√
x1x2 · · ·xn 6

x1 + x2 + · · ·+ xn

n
, (1)

where the equality sign holds only when x1 = x2 =

· · · = xn. The Lorenz system is











Ẋ = −σX + σY,

Ẏ = rX − Y −XZ,

Ż = XY − bZ,

(2)

where σ = 10, r = 28, and b = 8/3, for which the

well-known “butterfly” attractor exists (Lorenz, 1963).

From a long integration by using the fourth order

Runge-Kutta method with a time stepsize h = 0.01,

1×104 points are obtained within the attractor to form

an ensemble of initial unperturbed states. Then an ini-

tial error is superimposed on the unperturbed states

to form an ensemble of perturbed states. By integrat-

ing the Lorenz system, the solutions originating from

the unperturbed and perturbed initial states are deter-

mined to obtain an ensemble of 1×104 errors at each

time step. For notational simplicity, let the norm of

error in phase space at time τ be δ(τ) = ‖δ(τ)‖. For

chaotic systems, δ(τ) is always positive. The ensem-

ble mean of the growth of errors over n initial states

is given as

δ(τ) = 〈δ(xi, τ)〉n, (3)

where 〈 〉n denotes the ensemble average of errors

over n initial states (n = 1×104), δ(xi, τ) (hereafter,

for simplicity denoted as δi(τ)) denotes the error mag-

nitude at the initial state xi (i = 1, 2, · · · , n), and τ

is the evolution time. The ensemble mean can be de-

fined as the arithmetic or geometric over all n ensemble

members.

The ensemble mean of the growth of errors with

initial magnitude δ0 = 10−6 is presented in Fig.

1. The two error curves represent the arithmetic

mean and the geometric mean of the error growth,
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Fig. 1. Evolution of the AME (dashed line) and the GME

(solid line) with time. The magnitude of initial error is

10−6.

respectively. The error shows a smoother growth when

the computed mean is geometric rather than arith-

metic, consistent with Krishnamurthy (1993). In a

very short time interval, there are only trivial differ-

ences between the AME and the GME. With the time

increasing, the AME begins to depart from the GME.

In accordance with the inequality Eq. (1), the AME

is significantly greater than the GME for most of the

time. Both the AME and the GME finally stop in-

creasing and reach the saturation level.

For the initial errors with the same magnitude

δ0 = 10−6, superimposed on the 1×104 initial states,

they will gradually diverge as time goes by. From the

distributions of the errors δi(τ), the histograms seem

to concentrate on few bars because most of the er-

rors are really small compared to a few big values for

different times τ = 1, 4, 7, and 10 (Figs. 2a–d). If

making the logarithmic transform of the errors δi(τ),

we found that the resultant ln(δi(τ)) shows a charac-

ter of normal distribution (Figs. 2f–i). Similar results

have been found by Primo et al. (2008) and Gutiérrez

et al. (2008), who pointed out that the spatial finite

perturbations in spatiotemporal chaos follow a lognor-

mal distribution and that they become Gaussian after

a logarithmic transform. As a result, the Gaussian

techniques become feasible. The new parameters in-

troduced by them are exactly based on this property of

the perturbations. Since ln(δi(τ)) can be characterized

in terms of normal distributions, its mean represents

the most probable one. The mean of ln(δi(τ)) is just

the logarithmic of the geometric mean of the errors

δi(τ); consequently, the GME primarily represents the

average of the most probable errors. On the contrary,

the mean of the errors δi(τ), i.e., the AME, mainly re-

veals the average of the errors with large magnitudes,

which commonly have little probability to occur (Figs.

2a–e).

In addition, it is noted from Fig. 3 that the

growth of the GME is almost perfectly exponential

during much of the growth phase before saturation,

with a growth rate consistent with the maximal Lya-

punov exponent of Lorenz system. The results show

that the GME is directly related to the maximal Lya-

punov exponent, consistent with López et al. (2004).

The maximal Lyapunov exponent is defined as the

long-term average growth rate of an infinitesimal ini-

tial error (Wolf et al., 1985; Eckmann and Ruelle,

1985):

λ1 = lim
τ→∞

lim
δ(0)→0

1

τ
ln

δ(τ)

δ(0)
, (4)

where δ(0) is the norm of an infinitesimal initial error

superimposed at the initial state x, and δ(τ) denotes

the final separation distance of the infinitesimal initial

error. In the calculation of the maximal Lyapunov ex-

ponent, the average of local growth rates of initially

small errors is generally served as one of its approxi-

mations (Wolf et al., 1985; Nese, 1989; Ziehmann et

al., 2000):

λ1 ≈
1

n

n
∑

i=1

1

τ
ln

δi(τ)

δi(0)
, (n→∞), (5)

where δi(0) is a very small initial error superimposed

at the initial state xi, and δi(τ) denotes the error

growth during a short time interval τ . For Eq. (5), we

have

λ1 ≈
1

τ
ln

n

√

δ1(τ)δ2(τ) · · · δn(τ)
n

√

δ1(0)δ2(0) · · · δn(0)
. (6)

For the same initial error δ(0), we obtain

n

√

δ1(τ)δ2(τ) · · · δn(τ) ≈ δ(0)exp(λ1τ). (7)

Therefore, the maximal Lyapunov exponent describes

the exponential growth rate of the GME, unrelated

to the AME, suggesting that the growth of errors

with geometric mean is more appropriate than with

the arithmetic mean as the Lyapunov exponent is
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Fig. 2. Left-hand panels show the probability distributions of the error magnitude δi(τ) (i = 1,· · · ,1×104) for different

values of time τ (from 1 to 15). Right-hand panels show the corresponding probability distributions of the logarithmic

fluctuation values ln(δi(τ)). The arrows in (a)–(e) indicate the arithmetic mean of the errors δi(τ), while the arrows in

(f)–(j) indicate the arithmetic mean of the logarithmic values ln(δi(τ)). In (a)–(j), P denotes the probability (%).

simply the average of growth rate of small

errors.

Figure 4 shows the growth rates of the AME and

the GME, respectively. The growth rate is defined as

αe =
1

h
ln

δ(ih)

δ((i− 1)h)
, where the time step size h =

0.01 and the initial magnitude of errors δ0 = 10−6. In

Fig. 4b, the GME actually decays in a very short time

initially before entering the growth phase that pro-

gresses at a rate faster than the maximal Lyapunov

exponent until τ = 2. Afterwards, the GME enters

the exponential growth phase, with the growth

rate αe ≈ λ1. Finally, the growth of error enters the
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Fig. 3. Exponential growth of errors with the initial mag-

nitude δ0 = 10−6 and the growth rate λ1 = 0.905. λ1 is

the maximal Lyapunov exponent of Lorenz system. The

dashed curve represents the GME of Fig. 1.

nonlinear phase with a steadily decreasing growth rate,

and the growth rate αe gradually converges to 0. The

results indicate that the geometric mean can clearly

describe the process from initially exponential growth

to finally enter the nonlinear growth phase for suffi-

ciently small errors. López et al. (2004) found that

an initial perturbation of finite size ε0 grows in time

obeying the tangent space dynamics equations up to

a characteristic time tx(ε0) ∼ b− (1/λ1)ln(ε0), where

λ1 is the maximal Lyapunov exponent and b is a con-

stant. Actually, this characteristic time tx(ε0) is the

time before the GME enters the nonlinear phase in

Fig. 4b. The behavior of the AME is similar to that

of the GME at first, with a very large growth rate after

the initial decaying. After that, the growth rate of the

AME largely fluctuates around the maximal Lyapunov

exponent. The greatest amplitude of the fluctuation is

above 1.0. With the time passing, the growth rate of

the AME begins to decrease and the fluctuation also

weakens. Finally, the growth rate of the AME tends

to reach 0 (Fig. 4a).

In previous predictability studies, the growth rate

of the errors and the doubling time of small errors are

often used to measure the predictability (Lorenz, 1965,

1982). Given that the growth rate of the AME shows

a large fluctuation around the maximal Lyapunov ex-

ponent, there would be a great uncertainty in the es-

timate of the predictability. It is possible that the

predictability obtained by using the arithmetic mean

is lower or higher than that obtained by using the ge-

ometric mean, which depends on the time for compar-

ison. From this perspective, it is more appropriate to

measure the predictability with the geometric mean

than with the arithmetic mean. For chaotic systems,

once the error growth reaches the saturation level, al-

most all information on initial states is lost and the

prediction becomes meaningless. Recent studies have

defined the time when error growth reaches satura-

tion as the limit of predictability (Dalcher and Kalnay,

1987; Ding and Li, 2007). The time at which error

growth reaches saturation only depends on the dynam-

ical characteristic of chaotic systems rather than the

ensemble mean methods of errors. Therefore, if taking

the saturation time as the measure of predictability,

the limit of predictability obtained by using the arith-

metic mean is nearly equal to that obtained by using

the geometric mean. According to Fig. 1, we deter-

mine the limit of the predictability of Lorenz system

with the initial error δ0 = 10−6 as approximately tp =

20.0.

Although both the AME and the GME finally

reach saturation, the physical meanings of their satu-

ration levels are different. Over the Lorenz attractor,

Fig. 4. Growth rates (αe) of the (a) AME and (b) GME. The initial magnitude of errors is 10−6. The dashed lines

indicate the maximal Lyapunov exponent of Lorenz system λ1 = 0.905.
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two points are randomly chosen and the RMS distance

between the two randomly-chosen points is then com-

puted. This process is repeated 10000 times and the

average RMS distance d between two randomly-chosen

points over the Lorenz attractor can finally be ob-

tained. It is found that d is identical with the satura-

tion level of the AME (Fig. 5a), implying that the sat-

uration level of the AME represents the average RMS

distance between two randomly-chosen points over the

attractor. The saturation level of the GME can be

proven to be related to the probability distribution of

errors over the Lorenz attractor (Ding and Li, 2007),

and it can be obtained by the probability distribution

of errors. Next, we give a theorem and then present

the proof of the theorem.

The relationship between the saturation level of

the GME and the probability distribution of errors can

be inferred from this theorem.

Main theorem: Assume that the independent ran-

dom variables X1, X2, · · · · · · , Xn have the following

probability distribution:

f(x) =

{

p(x), ε 6 x 6 a,

0, x < ε or x > a,
(8)

where ε is an arbitrary small positive number, a is a

positive constant, and p(x) is a continuous function de-

fined on a closed interval [ε, a]. Let Zn =
( n
∏

i=1

Xi

)1/n

,

then

Zn
p−→ c, (n→∞), (9)

where
p−→ denotes the convergence in probability

(Rose and Smith, 2002) and c is a constant depending

on p(x).

A concise proof of the theorem can be given as

follows. Firstly we have

lnZn =
1

n

n
∑

i=1

lnXi.

Since Xi (i = 1, 2, · · · , n) follows an independent iden-

tical distribution, so does lnXi (i = 1, 2, · · · , n), the
mathematical expectation follows that

E(lnXi) =

∫ a

ε

lnx · p(x)dx = b,

where b is a constant that depends on p(x). Using the

Khinchine’s Weak Law of Large Numbers, as n→∞,

we obtain

lnZn
p−→ b.

Then we have Zn
p−→ eb = c. The proof of our main

theorem is completed.

For chaotic systems, as τ →∞, δ1(τ), δ2(τ), · · ·
· · · , δn(τ) will follow an independent identical distri-

bution similar to Eq. (8) (Ding and Li, 2007) (because

the chaotic attractor is confined to a finite region, a is

thought to be the maximum value of δi(τ) and ε is the

minimum value of δi(τ)). Consequently, all conditions

of the main theorem are satisfied, and then we obtain

n

√

δ1(τ)δ2(τ) · · · δn(τ)
p−→ c, (n→∞),

where c can be considered as the theoretical saturation

level of the GME. Using the converged probability dis-

tribution of errors over the attractor, the theoretical

saturation level of the GME can be determined. From

Fig. 5b, the theoretical saturation level of the GME

Fig. 5. (a) The average distance between two points that are randomly chosen over the Lorenz attractor and (b) the

theoretical saturation level of the GME calculated by the converged probability distribution of errors over the Lorenz

attractor. The dashed curves represent the AME and the GME of Fig. 1, respectively.
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is found to be completely in line with the actual one.

Two initially close points over the chaotic attractor

will separate with time and finally become unrelated.

At that moment the probability distribution of the

RMS error between two unrelated points will converge

to an independent identical distribution, which deter-

mines the saturation level of the GME. The saturation

level of the AME represents the average RMS error be-

tween two unrelated points over the attractor. From

this point of view, the saturation level of the GME is

closely connected with that of the AME, and they both

reflect a total loss of initial information for chaotic sys-

tems.

Figure 6 shows the dependence of the AME and

the GME on the magnitude of the initial error. Re-

gardless of the magnitude of the initial error δ0, the

AME and the GME both finally stop increasing and

reach the saturation level. The time at which the AME

and the GME reach saturation also lengthens as δ0

is reduced. Similar to the case for δ0 = 10−6, there

are only trivial differences between the AME and the

GME at the beginning, but the AME is significantly

greater than the GME with the time increasing. The

growth rates of the GME with δ0 = 10−9 (Fig. 7b)

and δ0 = 10−1 (Fig. 8b) are similar to those with δ0

= 10−6 (Fig. 4); however, the duration of the expo-

nential growth phase (with the growth rate equal to

the maximal Lyapunov exponent) of the GME length-

ens as δ0 becomes smaller and shortens as δ0 becomes

larger. When the magnitude of the initial error nears

1.0, the exponential growth phase of the GME will

disappear and the error growth will directly enter the

nonlinear phase (figure omitted). The time taken for

the AME to fluctuate around the maximal Lya-

punov exponent also increases as δ0 becomes smaller

Fig. 6. Evolution of the AME (dashed line) and the GME

(solid line) with time for δ0 of various magnitudes. From

top to bottom, the dashed (or solid) curves correspond to

δ0 = 10−9, 10−7, 10−5, 10−2, and 10−1, respectively.

Fig. 7. As in Fig. 4, but the magnitude of initial error is 10−9.

Fig. 8. As in Fig. 4, but the magnitude of initial error is 10−1.
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(Fig. 7a) and decreases as δ0 becomes larger (Fig. 8a).

3. Local average growth of errors

For the Lorenz system, assuming that all initial

perturbations with the amplitude ε and random di-

rections are on a three-dimensional spherical surface

centered at an initial point x0,

δ
T
0 δ0 = ε2. (10)

The local ensemble mean of the growth of errors over a

large number of random initial perturbations is given

by

δ(τ) = 〈δi(x0, τ)〉n, (11)

where 〈 〉n denotes the ensemble average of errors over

n initial random errors (n = 1×104), and δi(x0, τ) de-

notes the growth of initial random error δ0i (i = 1, 2,

· · · , n) at the initial state x0. Same to the global en-

semble average, the local ensemble average can also be

taken to the arithmetic mean or the geometric mean

over all n ensemble members. Figure 9 shows the av-

erage growth of errors introduced at the initial state

x01(10.25, 6.33, 33.33). The initial magnitude of ran-

dom errors is 10−6. A remarkable feature of Fig. 9

is that, regardless of the arithmetic mean or the geo-

metric mean, two error curves display nearly same be-

havior in their instantaneous growth or decay starting

from the initial time. Finally, the two error curves stop

growing and enter the nonlinear stochastic fluctuation

states. At that moment almost all information on ini-

tial states is lost and the prediction becomes mean-

ingless. If the limit of local predictability is defined

as the time at which error reaches the average value

of nonlinear stochastic fluctuation states (Ding et al.,

2008b), the predictability limit of the system at x01

can be quantitatively determined as tp = 18.4. For the

other initial state over the Lorenz attractor x02(–7.28,

–12.06, 16.15), the AME and the GME also show con-

sistent evolutions with time (Fig. 10). These results

can be explained by the fact that the error dynamics

is dependent on the local dynamics of the unperturbed

trajectory starting from the initial state x0 (Fig. 11).

The n random errors with the same magnitude but

different directions will be rapidly aligned toward the

Fig. 9. Growth of the arithmetic mean (dashed line)

and the geometric mean (solid line) of random errors in-

troduced at the initial state x01(10.25, 6.33, 33.33). The

initial magnitude of random errors is 10−6.

Fig. 10. As in Fig. 9, but for the other initial state

x02(–7.28, –12.06, 16.15).

Fig. 11. Time evolution of the variable in the Lorenz sys-

tem starting from the initial state x01(10.25, 6.33, 33.33).

most rapidly growing perturbation along the unper-

turbed trajectory, causing the magnitudes of n ran-

dom errors nearly equal. Therefore, the AME and the

GME are almost equal for different times. It is indi-

cated that there is no obvious difference between the

local average error growth with the arithmetic mean

and the geometric mean.

When the magnitude of initial random error is

reduced to 10−9 or increased to 10−1, the AME and
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Fig. 12. As in Fig. 9, but the magnitudes of initial errors are (a) 10−9 and (b) 10−1, respectively.

the GME also show consistent evolutions with time

(Fig. 12). The curve of δ0 = 10−6 (Fig. 9) seems

to be a part of that corresponding to δ0 = 10−9 (Fig.

12a). The results further demonstrate that the lo-

cal dynamics of the unperturbed trajectory starting

from an initial state determines the local error growth,

which does not depend on the choices of the AME or

the GME as a measure of the ensemble mean of error

growth. The arithmetic mean can be used to inves-

tigate the local predictability of chaotic systems, and

the geometric mean can do the same.

4. Summary and conclusions

To measure the global and local average pre-

dictability of chaotic systems, it is necessary to take

the ensemble mean of error growth at different initial

states over the chaotic attractor (or at the same initial

state but with random errors of different directions).

The methods of ensemble mean include the arithmetic

mean and the geometric mean. In this paper, taking

the Lorenz system as an example, we compare the

influences of the arithmetic mean and the geometric

mean on measuring the global and local average error

growth. The results show that for the global average

error growth, the GME shows a smoother growth than

the AME. Because the growth rate of the AME shows

a large fluctuation with time, if the growth rate of

the error is used to measure the predictability, there

would be a great uncertainty in the estimate of the

predictability. But if the time at which error growth

reaches saturation is defined as the limit of the pre-

dictability, the limits of the predictability obtained by

using the AME and the GME are similar. During the

phase of linear error growth, the exponential growth

rate of the GME is equal to the maximal Lyapunov

exponent, indicating that the GME is directly related

to the maximal Lyapunov exponent. In contrast, the

AME is unrelated to the maximal Lyapunov exponent.

The saturation value of the AME represents the av-

erage distance between two points that are randomly

chosen over the Lorenz attractor while the saturation

value of the GME is related to the probability distri-

bution of errors over the Lorenz attractor.

For the local average error growth, the error dy-

namics is dependent on the local dynamics of the

unperturbed trajectory starting from the initial state.

The evolutions of the AME and the GME are almost

consistent, indicating that the choices of the AME or

the GME have no influence on the measure of local

average predictability. It should be pointed out that

although the Lorenz’s three-variable model (Lorenz,

1963) is relatively simple, it still provides us with some

valuable information on the differences between the

GME and the AME. A more complicated model, such

as an atmospheric general circulation model (GCM),

is more likely to be associated with a more compli-

cated behavior. It is of practical significance to make a

more thorough comparison of the error mean methods

based on an atmospheric GCM instead of the Lorenz’s

three-variable model. This remains to be studied in

the future.
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