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ABSTRACT

In this paper, taking the Lorenz system as an example, we compare the influences of the arithmetic
mean and the geometric mean on measuring the global and local average error growth. The results show
that the geometric mean error (GME) has a smoother growth than the arithmetic mean error (AME) for
the global average error growth, and the GME is directly related to the maximal Lyapunov exponent, but
the AME is not, as already noted by Krishnamurthy in 1993. Besides these, the GME is shown to be more
appropriate than the AME in measuring the mean error growth in terms of the probability distribution
of errors. The physical meanings of the saturation levels of the AME and the GME are also shown to be
different. However, there is no obvious difference between the local average error growth with the arithmetic
mean and the geometric mean, indicating that the choices of the AME or the GME have no influence on the

measure of local average predictability.
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1. Introduction

The atmosphere is a forced dissipative nonlinear
system. On the assumption that external forces are
bounded, the existence of the atmosphere attractor
has been mathematically proved (Li and Chou, 1997;
Li and Wang, 2008). The predictability of atmospheric
weather fluctuations is limited to 1-2 weeks due to
the nonlinearity and instability properties of the atmo-
spheric flow (Lorenz, 1963, 1969; Zhou, 2005). Up to
now, the predictability studies of the atmosphere are
mainly based on numerical models (Leith, 1983; Sim-
mons et al., 1995; Mu et al., 2002; Lang and Wang,
2005). If the solutions evolving from several initial
states closely located around an assumed true state
have been obtained, the divergence of all the solutions
from the true solution is then determined. The pre-
dictability of the model is expressed in terms of the

growth rate of the root mean square (RMS) error and

the doubling time of small errors.

Atmospheric predictability is found to vary obvi-
ously with time and it depends on the particular state
of atmospheric flow patterns (Lorenz, 1965; Legras
and Ghil, 1985; Yoden and Nomura, 1993; Ding et
al., 2008a). To understand the average predictabil-
ity properties of the atmosphere, an ensemble mean of
error growth at different initial states must be consid-
ered. The ensemble mean can be either arithmetic or
geometric. In previous studies, the arithmetic mean
is widely used to measure the average growth of the
errors, as in the ensemble prediction systems (Tracton
and Kalnay, 1993; Palmer et al., 1993). However, the
arithmetic mean is found to have a weakness. If one
or two values of the errors are either extremely large
or extremely small compared to the majority of the
errors, the arithmetic mean might not be an appro-
priate average to represent the errors. In that case

the geometric mean can better represent the average
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errors. The geometric mean was applied in several re-
cent studies, showing good properties. For example,
the amplitude factor as the spatial geometrical mean
value of a perturbation, as introduced by Loépez et al.
(2004), is directly related to the maximal Lyapunov
exponent and exhibits nice scaling properties. A new
ensemble method (logarithmic bred vectors) based on
the geometric mean of the perturbations, as presented
by Primo et al. (2008), increases the diversity of the
ensemble and allows the spread to grow faster.

Since the error growth with the arithmetic mean
is different from that with the geometric mean, the es-
timated predictability based on the error growth is also
different.
Krishnamurthy (1993) compared the differences be-

Based on the Lorenz’s 28-variable model,

tween the error growth with the arithmetic mean and
the error growth with the geometric mean, and found
that the RMS error shows a smoother growth when the
computed mean is geometric rather than arithmetic.
Except the work of Krishnamurthy (1993), few stud-
ies have been performed to investigate the influences of
ensemble mean methods of errors on the predictability
To further understand which method

should be chosen to better measure the predictability,

measurement.

it is necessary to investigate again the differences be-
tween two kinds of ensemble mean methods in describ-
ing the error growth. In this paper, taking the Lorenz
system as an example, we further compare the differ-
ences between two kinds of ensemble mean methods
in measuring the predictability. The results show that
the geometric mean error (GME) shows a smoother
growth than the arithmetic mean error (AME) for the
global average error growth, and that the GME is di-
rectly related to the maximal Lyapunov exponent, but
the AME is not. These findings are consistent with
Krishnamurthy (1993). In addition, we show that the
GME is more appropriate than the AME in measur-
ing the mean error growth in terms of the probabil-
ity distribution of errors. We also show the physical
meanings of the saturation levels of the AME and the
GME. There is no obvious difference between the lo-
cal average error growth with the arithmetic mean and
the geometric mean, which is also a major finding of
this work.
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2. Global average growth of errors

Let x1,z9,23,- - ,2, be m positive numbers.

Their arithmetic mean and geometric mean are writ-

ten as (v1+ 22+ -+ax,)/nand Yr1x3 - - Ty, respec-
tively. It is easy to prove the following inequality,

Ti+ X+ + T
n )

Vr1xe - xpn <

(1)

where the equality sign holds only when 1 = 22 =

-+« =x,. The Lorenz system is

X =—0X +o0Y,

Y=rX-Y-XZ, (2)
Z=XY - bZ,

where o = 10, r = 28, and b = 8/3, for which the
well-known “butterfly” attractor exists (Lorenz, 1963).
From a long integration by using the fourth order
Runge-Kutta method with a time stepsize h = 0.01,
1x10% points are obtained within the attractor to form
an ensemble of initial unperturbed states. Then an ini-
tial error is superimposed on the unperturbed states
to form an ensemble of perturbed states. By integrat-
ing the Lorenz system, the solutions originating from
the unperturbed and perturbed initial states are deter-
mined to obtain an ensemble of 1x10* errors at each
time step. For notational simplicity, let the norm of
error in phase space at time 7 be 6(7) = ||6(7)]||. For
chaotic systems, 0(7) is always positive. The ensem-
ble mean of the growth of errors over n initial states

is given as

(1) = (6(; 7))n, 3)

where ( ), denotes the ensemble average of errors
over n initial states (n = 1x10%), §(x;,7) (hereafter,
for simplicity denoted as J;(7)) denotes the error mag-
nitude at the initial state ; (i =1, 2, ---, n), and 7
is the evolution time. The ensemble mean can be de-
fined as the arithmetic or geometric over all n ensemble
members.

The ensemble mean of the growth of errors with
initial magnitude &y = 107% is presented in Fig.
1. The two error curves represent the arithmetic

mean and the geometric mean of the error growth,
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Fig. 1. Evolution of the AME (dashed line) and the GME
(solid line) with time. The magnitude of initial error is
107°.

respectively. The error shows a smoother growth when
the computed mean is geometric rather than arith-
metic, consistent with Krishnamurthy (1993). In a
very short time interval, there are only trivial differ-
ences between the AME and the GME. With the time
increasing, the AME begins to depart from the GME.
In accordance with the inequality Eq. (1), the AME
is significantly greater than the GME for most of the
time. Both the AME and the GME finally stop in-
creasing and reach the saturation level.

For the initial errors with the same magnitude
do = 1075, superimposed on the 1x10* initial states,
they will gradually diverge as time goes by. From the
distributions of the errors §;(7), the histograms seem
to concentrate on few bars because most of the er-
rors are really small compared to a few big values for
different times 7 = 1, 4, 7, and 10 (Figs. 2a-d). If
making the logarithmic transform of the errors d;(7),
we found that the resultant In(d;(7)) shows a charac-
ter of normal distribution (Figs. 2f-i). Similar results
have been found by Primo et al. (2008) and Gutiérrez
et al. (2008), who pointed out that the spatial finite
perturbations in spatiotemporal chaos follow a lognor-
mal distribution and that they become Gaussian after
a logarithmic transform. As a result, the Gaussian
techniques become feasible. The new parameters in-
troduced by them are exactly based on this property of
the perturbations. Since In(d;(7)) can be characterized
in terms of normal distributions, its mean represents
the most probable one. The mean of In(d;(7)) is just
the logarithmic of the geometric mean of the errors
0;(7); consequently, the GME primarily represents the

average of the most probable errors. On the contrary,
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the mean of the errors §;(7), i.e., the AME, mainly re-
veals the average of the errors with large magnitudes,
which commonly have little probability to occur (Figs.
2a—e).

In addition, it is noted from Fig. 3 that the
growth of the GME is almost perfectly exponential
during much of the growth phase before saturation,
with a growth rate consistent with the maximal Lya-
punov exponent of Lorenz system. The results show
that the GME is directly related to the maximal Lya-
punov exponent, consistent with Lépez et al. (2004).
The maximal Lyapunov exponent is defined as the
long-term average growth rate of an infinitesimal ini-
tial error (Wolf et al., 1985; Eckmann and Ruelle,
1985):

A= lim 5(10i)r20 iln%;’ @)
where §(0) is the norm of an infinitesimal initial error
superimposed at the initial state «, and d(7) denotes
the final separation distance of the infinitesimal initial
error. In the calculation of the maximal Lyapunov ex-
ponent, the average of local growth rates of initially
small errors is generally served as one of its approxi-
mations (Wolf et al., 1985; Nese, 1989; Ziehmann et
al., 2000):

A~ %Z L0 (n — o0), (5)

=1 T (SZ (0) ’
where §;(0) is a very small initial error superimposed
at the initial state x;, and 9;(7) denotes the error
growth during a short time interval 7. For Eq. (5), we

have

NG GEEG)
/50)5200) - 0(0)

For the same initial error 6(0), we obtain

Y/61(7)6a(7) - -

1
A~ —
p

(6)

0n (1) = 6(0)exp(A17). (7)

Therefore, the maximal Lyapunov exponent describes
the exponential growth rate of the GME, unrelated
to the AME, suggesting that the growth of errors
with geometric mean is more appropriate than with

the arithmetic mean as the Lyapunov exponent is
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Fig. 2. Left-hand panels show the probability distributions of the error magnitude &;(7) (i = 1,---,1x10%) for different

values of time 7 (from 1 to 15). Right-hand panels show the corresponding probability distributions of the logarithmic

fluctuation values In(d;(7)). The arrows in (a)—(e) indicate the arithmetic mean of the errors d;(7), while the arrows in

(f)—(j) indicate the arithmetic mean of the logarithmic values In(d;(7)). In (a)—(j), P denotes the probability (%).

simply the average of growth rate of small

errors.
Figure 4 shows the growth rates of the AME and
the GME, respectively. The growth rate is defined as

1 =/ -
I )
hUS((i— 1)h)
0.01 and the initial magnitude of errors §y = 1076. In

Qg where the time step size h =

Fig. 4b, the GME actually decays in a very short time
initially before entering the growth phase that pro-
gresses at a rate faster than the maximal Lyapunov
exponent until 7 = 2. Afterwards, the GME enters
the exponential growth phase, with the growth

rate e =~ A1. Finally, the growth of error enters the
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Fig. 3. Exponential growth of errors with the initial mag-
nitude 09 = 107% and the growth rate Ay = 0.905. A; is
the maximal Lyapunov exponent of Lorenz system. The

dashed curve represents the GME of Fig. 1.

nonlinear phase with a steadily decreasing growth rate,
and the growth rate a, gradually converges to 0. The
results indicate that the geometric mean can clearly
describe the process from initially exponential growth
to finally enter the nonlinear growth phase for suffi-
ciently small errors. Lépez et al. (2004) found that
an initial perturbation of finite size £y grows in time
obeying the tangent space dynamics equations up to
a characteristic time t,(eo) ~ b — (1/A1)In(ep), where
A1 is the maximal Lyapunov exponent and b is a con-
stant. Actually, this characteristic time ¢,(gg) is the
time before the GME enters the nonlinear phase in
Fig. 4b. The behavior of the AME is similar to that
of the GME at first, with a very large growth rate after
the initial decaying. After that, the growth rate of the
AME largely fluctuates around the maximal Lyapunov
exponent. The greatest amplitude of the fluctuation is
above 1.0. With the time passing, the growth rate of
the AME begins to decrease and the fluctuation also
weakens. Finally, the growth rate of the AME tends

4.0 A (a)

3.0 1

o
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to reach 0 (Fig. 4a).

In previous predictability studies, the growth rate
of the errors and the doubling time of small errors are
often used to measure the predictability (Lorenz, 1965,
1982). Given that the growth rate of the AME shows
a large fluctuation around the maximal Lyapunov ex-
ponent, there would be a great uncertainty in the es-
It is possible that the
predictability obtained by using the arithmetic mean

timate of the predictability.

is lower or higher than that obtained by using the ge-
ometric mean, which depends on the time for compar-
ison. From this perspective, it is more appropriate to
measure the predictability with the geometric mean
than with the arithmetic mean. For chaotic systems,
once the error growth reaches the saturation level, al-
most all information on initial states is lost and the
prediction becomes meaningless. Recent studies have
defined the time when error growth reaches satura-
tion as the limit of predictability (Dalcher and Kalnay,
1987; Ding and Li, 2007). The time at which error
growth reaches saturation only depends on the dynam-
ical characteristic of chaotic systems rather than the
ensemble mean methods of errors. Therefore, if taking
the saturation time as the measure of predictability,
the limit of predictability obtained by using the arith-
metic mean is nearly equal to that obtained by using
the geometric mean. According to Fig. 1, we deter-
mine the limit of the predictability of Lorenz system
with the initial error 6y = 107% as approximately ¢, =
20.0.

Although both the AME and the GME finally
reach saturation, the physical meanings of their satu-

ration levels are different. Over the Lorenz attractor,

2.5
(b)
2.0 1
1.5 1
1.0

. \\MNM
0.0

—0.5

0 5 10 15 20 25 30 35 40
4

Fig. 4. Crowth rates (a.) of the (a) AME and (b) GME. The initial magnitude of errors is 107°. The dashed lines

indicate the maximal Lyapunov exponent of Lorenz system A1 = 0.905.
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two points are randomly chosen and the RMS distance
between the two randomly-chosen points is then com-
puted. This process is repeated 10000 times and the
average RMS distance d between two randomly-chosen
points over the Lorenz attractor can finally be ob-
tained. It is found that d is identical with the satura-
tion level of the AME (Fig. 5a), implying that the sat-
uration level of the AME represents the average RMS
distance between two randomly-chosen points over the
The saturation level of the GME can be
proven to be related to the probability distribution of

attractor.

errors over the Lorenz attractor (Ding and Li, 2007),
and it can be obtained by the probability distribution
of errors. Next, we give a theorem and then present
the proof of the theorem.

The relationship between the saturation level of
the GME and the probability distribution of errors can
be inferred from this theorem.

Main theorem: Assume that the independent ran-
dom variables X, Xo,------ , X, have the following
probability distribution:

e <z <a,

(®)

Tz <eorzx>a,

where € is an arbitrary small positive number, a is a

positive constant, and p(x) is a continuous function de-
n 1/n

fined on a closed interval [¢, a]. Let Z,, = ( 11 Xl-> ,

i=1
then
p
Z7l c7

9)

where —2> denotes the convergence in probability

(n — 0),

(Rose and Smith, 2002) and ¢ is a constant depending
on p(z).

1
|
=N
o o o o o o o o
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A concise proof of the theorem can be given as

follows. Firstly we have
1 n
Inz, = — ZlnXi.
n
i=1

Since X; (i =1, 2, - -+, n) follows an independent iden-
tical distribution, so does InX; (i = 1, 2, ---, n), the
mathematical expectation follows that

E(lnX;) = / Inz - p(z)dx = b,
g

where b is a constant that depends on p(x). Using the
Khinchine’s Weak Law of Large Numbers, as n — oo,

we obtain

InZ, -2 b.

b = ¢. The proof of our main

Then we have Z,, e
theorem is completed.
For chaotic systems, as 7 — oo, d1(7), da2(7),

-, 0n(7) will follow an independent identical distri-
bution similar to Eq. (8) (Ding and Li, 2007) (because
the chaotic attractor is confined to a finite region, a is
thought to be the maximum value of 6;(7) and ¢ is the
minimum value of ¢;(7)). Consequently, all conditions

of the main theorem are satisfied, and then we obtain

V61(1)a(7) - 0n(r) == ¢, (n— o0),

where ¢ can be considered as the theoretical saturation
level of the GME. Using the converged probability dis-
tribution of errors over the attractor, the theoretical
saturation level of the GME can be determined. From

Fig. 5b, the theoretical saturation level of the GME

6.0
3.0+
0.0 A

(b)

g —3.0 A
i=
—6.0
9.04
-12.01,"
-15.0

0 5 10 15 20 25 30 35 40
4

Fig. 5. (a) The average distance between two points that are randomly chosen over the Lorenz attractor and (b) the

theoretical saturation level of the GME calculated by the converged probability distribution of errors over the Lorenz
attractor. The dashed curves represent the AME and the GME of Fig. 1, respectively.
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is found to be completely in line with the actual one.
Two initially close points over the chaotic attractor
will separate with time and finally become unrelated.
At that moment the probability distribution of the
RMS error between two unrelated points will converge
to an independent identical distribution, which deter-
mines the saturation level of the GME. The saturation
level of the AME represents the average RMS error be-
tween two unrelated points over the attractor. From
this point of view, the saturation level of the GME is
closely connected with that of the AME, and they both
reflect a total loss of initial information for chaotic sys-
tems.

Figure 6 shows the dependence of the AME and
the GME on the magnitude of the initial error. Re-
gardless of the magnitude of the initial error §y, the
AME and the GME both finally stop increasing and
reach the saturation level. The time at which the AME
and the GME reach saturation also lengthens as Jg
is reduced. Similar to the case for 6y = 107, there
are only trivial differences between the AME and the
GME at the beginning, but the AME is significantly
greater than the GME with the time increasing. The
growth rates of the GME with 6o = 1079 (Fig. 7b)

4.0 (a)
3.0
& 2.0 ]
1.0 A/MMWWMWWWAUHUWM
0.0
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and dp = 107! (Fig. 8b) are similar to those with &g
= 1075 (Fig. 4); however, the duration of the expo-
nential growth phase (with the growth rate equal to
the maximal Lyapunov exponent) of the GME length-
ens as 0y becomes smaller and shortens as dg becomes
larger. When the magnitude of the initial error nears
1.0, the exponential growth phase of the GME will
disappear and the error growth will directly enter the
nonlinear phase (figure omitted). The time taken for
the AME to fluctuate around the maximal Lya-

punov exponent also increases as g becomes smaller

Fig. 6. Evolution of the AME (dashed line) and the GME
(solid line) with time for dp of various magnitudes. From
top to bottom, the dashed (or solid) curves correspond to
8o =107%,1077, 107, 1072, and 107!, respectively.

2.5

(b)
2.0 4

" M
0.0 4

0 5 10 15 20 25 30 35 40
T

Fig. 7. As in Fig. 4, but the magnitude of initial error is 1072,
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Fig. 8. As in Fig. 4, but the magnitude of initial error is 107*.
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(Fig. 7a) and decreases as dg becomes larger (Fig. 8a).
3. Local average growth of errors

For the Lorenz system, assuming that all initial
perturbations with the amplitude ¢ and random di-
rections are on a three-dimensional spherical surface

centered at an initial point xg,

8380 = €2 (10)

The local ensemble mean of the growth of errors over a
large number of random initial perturbations is given

by

o(1) = (6:(x0, T))n, (11)

where ( ), denotes the ensemble average of errors over
n initial random errors (n = 1 x 10%), and §;(xo, 7) de-
notes the growth of initial random error d¢; (i = 1, 2,

- ,n) at the initial state &p. Same to the global en-
semble average, the local ensemble average can also be
taken to the arithmetic mean or the geometric mean
over all n ensemble members. Figure 9 shows the av-
erage growth of errors introduced at the initial state
x01(10.25, 6.33, 33.33). The initial magnitude of ran-
dom errors is 1076. A remarkable feature of Fig. 9
is that, regardless of the arithmetic mean or the geo-
metric mean, two error curves display nearly same be-
havior in their instantaneous growth or decay starting
from the initial time. Finally, the two error curves stop
growing and enter the nonlinear stochastic fluctuation
states. At that moment almost all information on ini-
tial states is lost and the prediction becomes mean-
ingless. If the limit of local predictability is defined
as the time at which error reaches the average value
of nonlinear stochastic fluctuation states (Ding et al.,
2008b), the predictability limit of the system at @o;
can be quantitatively determined as ¢, = 18.4. For the
other initial state over the Lorenz attractor xoz(—7.28,
-12.06, 16.15), the AME and the GME also show con-
sistent evolutions with time (Fig. 10). These results
can be explained by the fact that the error dynamics
is dependent on the local dynamics of the unperturbed
trajectory starting from the initial state xq (Fig. 11).
The n random errors with the same magnitude but

different directions will be rapidly aligned toward the

VOL.25

Fig. 9. Growth of the arithmetic mean (dashed line)
and the geometric mean (solid line) of random errors in-
troduced at the initial state xo1(10.25, 6.33, 33.33). The

initial magnitude of random errors is 1076,

Fig. 10. As in Fig. 9, but for the other initial state
To2(-7.28, —12.06, 16.15).

15 20 25 30 35 40 45 50
4

0 5 10

Fig. 11. Time evolution of the variable in the Lorenz sys-
tem starting from the initial state xo1(10.25, 6.33, 33.33).

most rapidly growing perturbation along the unper-
turbed trajectory, causing the magnitudes of n ran-
dom errors nearly equal. Therefore, the AME and the
GME are almost equal for different times. It is indi-
cated that there is no obvious difference between the
local average error growth with the arithmetic mean
and the geometric mean.

When the magnitude of initial random error is
reduced to 107 or increased to 107!, the AME and
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Fig. 12. As in Fig. 9, but the magnitudes of initial errors are (a) 10~ and (b) 107, respectively.

the GME also show consistent evolutions with time
(Fig. 12). The curve of o = 107¢ (Fig. 9) seems
to be a part of that corresponding to §p = 1079 (Fig.
12a). The results further demonstrate that the lo-
cal dynamics of the unperturbed trajectory starting
from an initial state determines the local error growth,
which does not depend on the choices of the AME or
the GME as a measure of the ensemble mean of error
growth. The arithmetic mean can be used to inves-
tigate the local predictability of chaotic systems, and

the geometric mean can do the same.
4. Summary and conclusions

To measure the global and local average pre-
dictability of chaotic systems, it is necessary to take
the ensemble mean of error growth at different initial
states over the chaotic attractor (or at the same initial
state but with random errors of different directions).
The methods of ensemble mean include the arithmetic
mean and the geometric mean. In this paper, taking
the Lorenz system as an example, we compare the
influences of the arithmetic mean and the geometric
mean on measuring the global and local average error
growth. The results show that for the global average
error growth, the GME shows a smoother growth than
the AME. Because the growth rate of the AME shows
a large fluctuation with time, if the growth rate of
the error is used to measure the predictability, there
would be a great uncertainty in the estimate of the
predictability. But if the time at which error growth
reaches saturation is defined as the limit of the pre-
dictability, the limits of the predictability obtained by

using the AME and the GME are similar. During the
phase of linear error growth, the exponential growth
rate of the GME is equal to the maximal Lyapunov
exponent, indicating that the GME is directly related
to the maximal Lyapunov exponent. In contrast, the
AME is unrelated to the maximal Lyapunov exponent.
The saturation value of the AME represents the av-
erage distance between two points that are randomly
chosen over the Lorenz attractor while the saturation
value of the GME is related to the probability distri-
bution of errors over the Lorenz attractor.

For the local average error growth, the error dy-
namics is dependent on the local dynamics of the
unperturbed trajectory starting from the initial state.
The evolutions of the AME and the GME are almost
consistent, indicating that the choices of the AME or
the GME have no influence on the measure of local
average predictability. It should be pointed out that
although the Lorenz’s three-variable model (Lorenz,
1963) is relatively simple, it still provides us with some
valuable information on the differences between the
GME and the AME. A more complicated model, such
as an atmospheric general circulation model (GCM),
is more likely to be associated with a more compli-
cated behavior. It is of practical significance to make a
more thorough comparison of the error mean methods
based on an atmospheric GCM instead of the Lorenz’s
three-variable model. This remains to be studied in
the future.
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